Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Rev Lett ; 124(1): 015301, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976679

RESUMO

Superfluid ^{3}He under nanoscale confinement has generated significant interest due to the rich spectrum of phases with complex order parameters that may be stabilized. Experiments have uncovered a variety of interesting phenomena, but a complete picture of superfluid ^{3}He under confinement has remained elusive. Here, we present phase diagrams of superfluid ^{3}He under varying degrees of uniaxial confinement, over a wide range of pressures, which elucidate the progressive stability of both the A phase, as well as a growing region of stable pair density wave state.

3.
Appl Phys Lett ; 116(17)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34815582

RESUMO

Microwave-to-optical transduction has received a great deal of interest from the cavity optomechanics community as a landmark application for electro-optomechanical systems. In this Letter, we demonstrate a novel transducer that combines high-frequency mechanical motion and a microwave cavity for the first time. The system consists of a 3D microwave cavity and a gallium arsenide optomechanical crystal, which has been placed in the microwave electric field maximum. This allows the microwave cavity to actuate the gigahertz-frequency mechanical breathing mode in the optomechanical crystal through the piezoelectric effect, which is then read out using a telecom optical mode. The gallium arsenide optomechanical crystal is a good candidate for low-noise microwave-to-telecom transduction, as it has been previously cooled to the mechanical ground state in a dilution refrigerator. Moreover, the 3D microwave cavity architecture can naturally be extended to couple to superconducting qubits and to create hybrid quantum systems.

4.
Nat Commun ; 7: 13165, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762273

RESUMO

Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins.

5.
Anal Chem ; 86(22): 11368-72, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25329453

RESUMO

We demonstrate detection of femtogram-scale quantities of the explosive molecule 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) via combined nanomechanical photothermal spectroscopy and mass desorption. Photothermal spectroscopy provides a spectroscopic fingerprint of the molecule, which is unavailable using mass adsorption/desorption alone. Our measurement, based on thermomechanical measurement of silicon nitride nanostrings, represents the highest mass resolution ever demonstrated via nanomechanical photothermal spectroscopy. This detection scheme is quick, label-free, and is compatible with parallelized molecular analysis of multicomponent targets.


Assuntos
Nanotecnologia , Temperatura , Triazinas/análise , Estrutura Molecular , Nanopartículas/análise , Processos Fotoquímicos , Compostos de Silício/análise , Análise Espectral
6.
Nano Lett ; 14(5): 2541-5, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24720496

RESUMO

We study high-Q nanostrings that are joined end-to-end to form coupled linear arrays. Whereas isolated individual resonators exhibit sinusoidal vibrational modes with an almost perfectly harmonic spectrum, the modes of the interacting strings are substantially hybridized. Even far-separated strings can show significantly correlated displacement. This remote coupling property is exploited to quantify the deposition of femtogram-scale masses with string-by-string positional discrimination based on measurements of one string only.

7.
Anal Chem ; 85(15): 7182-90, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23819473

RESUMO

Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Reação em Cadeia da Polimerase/instrumentação , Análise de Célula Única/instrumentação , Quinase do Fator 2 de Elongação/genética , Humanos , Células K562 , Edição de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...